NOTATION

k(t}, heat flux relaxation function; aft), internal energy relaxation function; T, rod temperature; g,
ambient temperature; t, time; x, coordinate along the rod; oxx(X, t), stress; u(x, t), displacement; e(x, t),
deformation; ¢,= (E/p)l/z, speed of sound in the rod under isothermal conditions; E, elasticity modulus; p,
density of the material; oy, coefficient of thermal expansion; A, thermal-conductivity coefficient; @, thermal-
diffusivity coefficient; b, thermal-activity coefficient; cq = (a/m)Y?, velocity of heat propagation; r,., heat flux
relaxation time; 75(t), unique Heaviside function.
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HYDRODYNAMICS AND HEAT AND MASS TRANSFER
IN A SOLIDIFYING MELT

P. F. Zavgorodnii, F. V. Nedopekin, UDC 669.18.065:532.5:536.25
and I. L. Povkh

The effect of natural thermal convection in a solidifying melt on the distribution of an admixture
in the liquid and solid phases as a function of the Lewis and Schmidt numbers is studied numer-
ically.

It is known [1-3] that the hydrodynamics of the melt has an important influence on the processes of heat
and mass transfer in a crystallizing ingot. Therefore, in an analysis of the conditions of formation of chemi-
cal nonuniformity of ingots it is important to know the laws of the development of the convective currents and
the distribution of the velocity fields in the volume of unsolidified metal.

There are several natural causes producing the mixing of the liquid metal during its crystallization:
1) natural thermal convection of the melt owing to its temperature nonuniformity;

2) shrinkage of the metal during solidification caused by the difference in densities of the liquid and
solid phases;

3) concentration convection due to the nonuniformity of the concentration of the admixture in the melt;

4) the formation of nuclei of the solid phase at the crystallization front and their descentalongthecrystal-
lization boundary.

One of the main causes of mixing of the melt in the process of its crystallization is natural thermal con-
vection [1], the investigation of which is a complex and important problem.

The problem of the distribution of an admixture in a solidifying melt is solved for the most part in a one-
dimensional formulation and without allowance for thermal convection, which is evidently connected with the
absence of analytical methods for solving nonsteady nonlinear differential equations of transfer of an admixture
in regions with moving boundaries under conditions of convective motion of the solidifying melt. In this con-
nection the influence of natural thermal convection on the distribution of an admixture in a solidifying melt has
been studied insufficiently and requires additional research.

A rectangular region, semiinfinite along the horizontal coordinate normal to the plane of the cross sec-
tion, is analyzed for a study of thermal convection and its influence con the processes of transfer of an admix-
ture in a solidifying melt. The region is filled with a melt (of low-carbon steel) with an initial temperature
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higher than the crystallization temperature and with a small initial content (0.1-0.2% by weight) of a dissolved
admixture (carbon).

i At a time different from zero the temperature of the boundaries of the region is abruptly reduced to the
crystallization temperature of the melt, as a result of which the solid phase forms at the periphery of the
region near its cool walls, while in the liquid phase convective motion of the melt arises under the action of
the temperature gradient. Considering the small initial content of the admixture in the melt, we assume that
the solidification boundary is flat and that the density of the melt varies insignificantly as a function of the con-
centration of the admixture, i.e., concentration convection is ighored.

The law of advance of the solidification boundary is postulated in the form of a quadratic law, which fol-
lows from the solution of the Stefan problem with the condition of constancy of the temperature at the phase
interface [4}]

& =4 —a1'Fo and R,=a;}/Fo (=12,
where €j is the width of the liquid zone; Rj is the width of the solid crust; oy and o, are the coefficients of
solidification.

Having defined the characteristic velocity and the characteristic pressure difference by the expressions
2

= X, 0= Pl 0= 0g X2

we write the system of Navier—Stokes equations, taken in the Boussinesq approximation, of heat transfer,
mass transfer, and continuity in dimensionless form as follows:

v
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The system of equations (1)-(4) is supplemented by the following boundary conditions: initial conditions
Vifomo0= 0, Olpomg=1, Slremo=1I; (5)
boundary conditions for the velocity components
Vll'ﬂx:Rx = Vl‘ Ni=; = V]l"'lz=Rz = V1| Ne==€s = O’ (6)
V2‘:r|1=R1 = V2| N=€; — V2|n3=Rg = Vzl MNy==8; — 0' (7)

Since the melt contains a small amount of the admixture, the temperature at the solidification boundary
is roughly assumed to be constant and equal to the crystallization temperature of the melt

@lm:Rx = @I ny=g; = G)]ﬂz:Rz = e{ To=8y ™ 0. (8)
The boundary conditions for the concentration of the admixture are written down on the basis of the equa~

tions of balance of the admixture at each boundary of the region, neglecting the diffusion of the admixture in
the solid phase in comparison with that in the liquid phase

— ‘;‘fh LFR’ =Ri(1—k)S ok, 9)
— gi im: g (l —k&) S Em:h; (10)
_J;;i; . E:R; (1 —&) SLFRZ; (11)
_ g‘l inz:ezse;u;ko) N L (12)

where e;= dei/dFo; Ri=dRi/dFo are the rates of advance of the phase interface boundaries (i=1, 2). The width
of the region is chosen as the characteristic size.

1370



The problem is formulated using the Fourier diffusion time Fo= Dt/X%, which leads to the appearance in

the initial equations of the Lewis (Le) and Schmidt (Sm) numbers, whose effect on the velocity, temperature,
and concentration fields in crystallizing melts is still inadequately studied.

For further transformations we introduce the curl of the velocity ¢, the stream function s and the new
variables ¢y and ¢, which accomplish the transition from a rectangular region with moving boundaries to the
region of a unit square [5]

o p
Vl = anz ’ 2 = anl > (13)
@ = rotV; (14)
MR MR
e R ey (15)

An implicit finite-difference system of variable directions (a longitudinal—transverse system [6]) is used
for the numerical realization of the system of equations (1)-(4) with the boundary conditions (5)-(12) on a

computer. Uniform coordinate and time (w), and Fop) grids are introduced in accordance with this. Taking the
numbers of the partitions of the region along the coordinates ¢; and ¢, as equal (J=M), we have

1 1
mhr{clzih, L=mh b= 5 =">0

i=012.,J;, m=0,1, 2,.., M};

(16)
ro=NVey n_al 1
Fonﬁ-{Fo mﬁrﬂ =47 O<A<1J. (17

With allowance for Egs. (16) and (17) the region of the continuous argument is replaced by a region of a

discrete argument, the differential operators are replaced by difference operators, and the difference analog
of the boundary conditions is formulated.

Equations (1)-(4), with allowance for Eqgs. (13)-(15) and using the method of fractional steps and their
separation with respect to the coordinates [7], take the form

Pim—Pim — ! [ 1 <a‘\l.1
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where ¢=¢408=0" S=8% ¢=¢ ;7 O0=0 ;. S=8 ?: (I): ;©=®n+l; S:S"+l.

The difference approximation of the boundary conditions is made, with the boundary conditions for the
curl of the velocity and the concentration being obtained through the expansion of these functions in a Taylor
series in the neighborhoods of the respective boundaries, using the initial boundary conditions (6)-(7) and (9)-
(12), as well as Eqgs. (3)-(4).

Initial conditions:

Yon=0 @n=0 On=1 Su=1 (24)
Boundary conditions for the stream function:
Yom = Pr,m =P, 0 =P, 1= 0. (25)
Boundary conditions for the curl of the velocity:
2
Pro =~ 45 Yi1; (26)
2
Py = G2 L3 M—13 27
2 .
Po,m = — 75 Pi,m; (28)
2
Qrm = — _]—1:2- ‘q’.l—l, m- (29)
Boundary conditions for the concentration:
_ hZ
§ Sl,m "T‘ ‘_"',“SO,m
0, m = ; V (30)
, h2 .2
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- h2
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where K=1 — k.

As the method of constructing the difference systems, on the basis of the accuracy requirements, we use
the integrointerpolation method developed by Samarskii [6], as a result of which the system of equations (18)-
(23) and the boundary conditions (24)-(33) are reduced to a system of trial-run equations which is realized on a
Dnepr-21 computer.

From the conditions of mathematical stability and sufficiently high computation accuracy a spatial grid
32 x 32 in size with A=0.0008 is established as a result of 2a numerical experiment.

The influence of the Lewis and Schmidt numbérs on the processes of heat and mass transfer in a solidi-
fying ingot is studied for a melt of low-carbon steel with the following parameters: Gr=0.2: 10% ke=0.5; oy =
as=105;1,=3.
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Fig. 1. Influence of Lewis numbers on isolines of the stream func-
tions (a and b), on the temperature field (c and d), and on the con-
centration field (e and ) at the time Fo=0.32 107! for a Schmidt
number Sm=90: a) Le=0.24"1072, y;=0.8"10%, y,=0.5" 10, y;=
0.3-10%, 4=0.1-10% b) Le=0.012, y;=0.42"10%, y,=0.26 ' 10¢,

Y3 = 0.7-10% c) Le = 0,24-1072,0; = 0.99, @, = 0.97, @5 = 0.84, ®, =
0.5; d) Le = 0.012, ® = 0.99, ®, = 0.94; e) Le = 0,24-10"%, 8, =1, S, =
1.06, 83 = 1.09; ) Le = 0.012, S; =1, S, = 1.02, S5 = 1.1, §; = 1.15.

Fig. 2. Variation in the time of the maximum value of the velocity
component Vy for the descending current as a function of the Lewis
and Schmidt numbers: 1) Le=0.24-10"%; Sm=90; 2) Le=0.012;
Sm=90; 3) Sm=9; Le=0.24-107%; 4) S|m=900; Le=0.24-102.

The authors discussed the influence of the Grashof numbers on these processes earlier [5].

An analysis of Fig. 1 shows that with an increase in the Lewis number one observes a slowing tendency
in the development of the velocity field (Fig. 1a and b) and accordingly in that of the thermal (Fig. 1c and d) and
concentration (Fig. le and i) fields. In the process an increase occurs in the time segment of the acceleration
to the maximum value (Fig. 2), which remains approximately the same for all Lewis numbers in the interval
studied (Le=0.0024~-0.012).

This property of the development of thermal convection with variation in the Lewis number is explained
by the fact that melts with a low thermal conductivity correspond to large Lewis numbers, as a rule, so that
the time of establishment of the temperature gradient, which determines the maximum veloecity, increases.

From an analysis of the concentrations of the admixture at the phase transition boundary (see Table 1) it
follows that an increase in the Lewis number has an effect on the distribution of the admixture similar to the
effect of the Grashof number [5], i.e., with an increase in the Lewis number one observes a decrease in the
. concentration of the admixture at the phase interface up to a time corresponding to ~ 509 solidification of the
liquid melt. The explanation for this fact is that large Lewis numbers correspond to large velocities of the
convection currents (Fig. 2, curves 1 and 2), not counting the initial segment, and this is the main reason for
the strong withdrawal of the admixture from the phase interface into the interior of the melt.

The concentration 8; of the admixture in the solid phase is determined from the following equilibrium

equation which is satisfied at the boundary of the phase transition
Sllb: kosfb (34)

A study of the distribution of the impurity in the solid phase (Fig. 3a) indicates that with an increase in
Le the peripheral sections of the crystallized melt are depleted of the admixture and the axial zone of the
ingot is enriched with the admixture. This is explained by the described character of the behavior of the admix-
ture at the boundary of the phase transition as a function of Le. Thus, an increase in the Lewis number leads
to strengthening of the nonuniformity of the distribution of the admixture over the height of the ingot and to its
more uniform distribution over horizontal cross sections of the solidifying melt.
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TABLE 1. Concentrations of Admixture at Phase
Interface for Different Lewis and Schmidt Numbers with

172= 1.5
| %
Ry : Sm =060 Le.-p.24.10-2
lLe=0,24.10~2 ] Le—o,012. sm=9 | sme=oo0
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Fig. 3. Distribution of the admixture in the solid phase as a func-
tion of the Lewis (a) and Schmidt (b) numbers: 1) Le=0.24-10"%;
2) Le=0.012; 3) Sm=9; 4) Sm=900.

Fig. 4. Influence of Schmidt numbers on isolines of the stream
function (a and b), on the temperature field (¢ and d), and on the
concentration field (e and f) at the time Fo=0.32-10"* for the
Lewis number Le=0.24-10-% a) Sm=9, y;=0.29" 102, y,=0.19
102, $3=0.14 - 10'; b) Sm=900, y;=0.14 - 10, y,=0.1 10 ,¢3—o 9-

¢) Sm=9, @ =0.99, ®=0.98, @ =0.79; d) Sm=900, ®=0.55,

0.49, ©550.2; €) Sm=9, §;=1; ) Sm=900, 5,=1, 5,=1.04, S3=
1 09

The second part of the investigations is devoted to a study of the processes of heat and mass transfer in
a solidifying melt under the conditions of natural thermal convection as a function of the Schmidt number for a
Lewis number Le=0.0024.

An increase in the Schmidt number promotes the acceleration of the development of thermal convection
(Fig. 4a, b), with the time segment of the acceleration of the velocity to the maximum value decreasing and
the value of the velocity of convective motion of the melt increasing (Fig. 2, curves 3 and 4). The strengthen-
ing of thermal convection in the solidifying melt with an increase in Sm leads to intensification of the processes
of heat transfer (Fig. 4c, d) and mass transfer (Fig. 4e, f) in the liquid core of the region under study.

The behavior of the concentration of the admixture at the boundary of the phase transition (see Table 1)
with an increase in the Schmidt number is similar to the behavior of the analogous concentration with an
increase in the Grashof [5] and Lewis numbers, i.e., one observes a decrease in the concentration of the
admixture in the first half of the solidification process and its increase at later times.

The described character of the distribution of the admixture at the boundary of the phase transition can
be explained by the fact that up to the time corresponding to the solidification of ~50% of the melt, the thermal
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convection strengthens the transfer of the admixture from the crystallization front into the interior of the melt.
And the intensification of the process of withdrawal of the admixture from the solidification boundary is the
main reason for its decrease at the latter.

The increase in the concentration of the admixture following its decrease in comparison with the case
when thermal convection is less intense (Sm=9) is obviously explained by the general saturation of the liquid
core by the admixture, which takes place much more intensively for a melt with Sm=900 than for a melt with
Sm=9.

An analysis of the graphs of the distribution of the admixture in the solid phase (Fig. 3b) for the case of
an equilibrium coefficient (34) shows that with an increase in the Schmidt number the central part of the crystal-
lized melt is enriched with the admixture owing to the depletion of the peripheral sections.

Thus, the patterns of behavior of the admixture in a solidifying melt with variation in the Lewis, Schmidt,
and Grashof numbers are similar in a qualitative respect, and therefore the conclusion drawn in [5) that the
required degree of purification of an industrial ingot from an admixture can be achieved by controlling the
intensity of thermal convection in the liquid core of the crystallizing melt is confirmed by the results of the
studies presented in the present report.

NOTATION

Xys U, Py, characteristic size, velocity, and pressure; D, coefficient of diffusion of admixture in the
liquid phase; py, density of melt at the crystallization temperature; V =U/0,, dimensionless velocity vector;
7n=P/P,, dimensionless pressure; &,, unit vector coinciding with the direction of free-fall acceleration; Sm=
»/D, Schmidt number; v, kinematic viscosity of the melt; Gr=g(T, ~ T¢)8X3/v?, Grashof number; q, absolute
value of free-fall acceleration vector; Ty, T, initial temperature of melt and its crystallization temperature;
B, coefficient of volumetric expansion of liquid melt; ®=(T — T) ATy — T¢), dimensionless temperature of the
melt; T, dimensional temperature of the melt; Fo=tD/X%, Fourier number or dimensionless time; Le=D/a,
Lewis number; g, coefficient of thermal diffusivity of the melt; S=C/C,, relative concentration of admixture in
the melt; C, Cy, absolute and initial concentration of admixture in the melt; Vy, V,, horizontal and vertical
velocity components; m =X/X,, n, = X3/Xy, dimensionless horizontal and vertical coordinates; X;, X,, dimen-~
sional coordinates; kg, equilibrium coefficient of distribution of the admixture.
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